Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(3): e10939, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38500854

RESUMEN

Theory predicts that in resource-limited environments, coexisting species may overlap their niche dimensions but must differ in at least one to avoid competitive exclusion. Specifically, it has been suggested that the coexistence of competing species within a guild, could be sustained with mechanisms of resource partitioning, such as segregation along a trophic dimension. Among the most gregarious mammals are bats, which present diversification in their diet based on habitat choice and body size. Despite differences that could explain specialization in prey selection, there are insufficient studies that explore food overlap in mixed bat colonies and the factors that determine the selection of prey, both at intra- and inter-specific levels. To fill this gap, we analyzed the isotope signal (δ13C and δ15N) in feces collected in a mixed colony of Tadarida brasiliensis and Myotis chiloensis. To understand how several factors could influence these isotopic signals, intrinsic explanatory variables were analyzed, including body mass, body length, age, and sex. Also, extrinsic variables were analyzed, including monthly temporality and moonlight intensity. Our findings support age-dependent specialization in M. chiloensis, with a significant role of moonlight intensity and sex on δ15N. In T. brasiliensis, we identified a significant effect of size, sex, and ear length on δ15N. Our analysis indicates that both species of bats experience diverse degrees of overlap through austral summer months, affected by several factors that explain the variability in their fecal isotopic signals.

2.
Sci Total Environ ; 912: 169564, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38142996

RESUMEN

Urbanization stands out as a significant anthropogenic factor, exerting selective pressures on ecosystems and biotic components. A notable outcome of urbanization is thermal heterogeneity where the emergence of Urban Heat Islands is characterized by elevated air and surface temperatures compared to adjacent rural areas. Investigating the influence of thermal heterogeneity on urban animals could offer insights into how temperature variations can lead to phenotypic shifts. Urban pigeons (Columba livia) serve as an excellent model for studying urban thermal effects, given the melanism variations, which are associated with the pleiotropy of the melanocortin system. To examine the development of physiological plasticity in response to urban thermal variations, we conducted a study on pigeons in Santiago, Chile, during the rainy season. We assessed the influence of habitat on physiological traits related to metabolism and antioxidant capacities, which are theoretically affected by feather coloration. Our findings reveal that variations in melanism significantly impact pigeon physiology, affecting both antioxidant capacities and the mitochondrial activity of red blood cells. It was found that higher urban temperatures, from both the current sampling month and the prior sampling month (from CRU TS dataset), were negatively and strongly associated with lower antioxidant and metabolic activities. This suggests that elevated urban temperatures likely benefit the energetic budgets of pigeon populations and mitigate the negative effects of oxidative metabolism, with differential effects depending on feather colorations.


Asunto(s)
Columbidae , Melanosis , Animales , Columbidae/fisiología , Ciudades , Plumas , Antioxidantes , Ecosistema , Calor , Estrés Oxidativo
3.
J Comp Physiol B ; 193(6): 677-688, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37831173

RESUMEN

Fetal metabolic programming produced by unfavorable prenatal nutritional conditions leads to the development of a disorder called "thrifty phenotype", which is associated with pathologies such as diabetes and obesity in adulthood. However, from an ecophysiological approach, few studies have addressed the development of thrifty phenotypes in terms of energy. This might represent an adaptive advantage against caloric deficiency conditions extending into adulthood. The objective of this study is to investigate the potential adaptive value of the thrifty phenotype expression through prenatal programming in a rodent model experiencing varying dietary conditions in different temporal contexts. To fill this gap, adult males of Mus musculus (BALB/C) from two maternal pregnancy groups were analyzed: control (ad libitum feeding) and caloric restriction from day 10 of gestation (70% restriction). Adult offspring of these groups were split further for two experiments: acute food deprivation and chronic caloric restriction at 60%. The acute food deprivation was performed for 24, 48 or 72 h while the caloric restriction regime was sustained for 20 days. For each experiment, morphological variables, such as body and organ mass, and gene expression related to lipid and carbohydrate metabolism from the liver and brain, were evaluated. In chronic caloric restriction, behavioral tests (open-field test and home-cage behavior) were performed. Our results indicate that under acute deprivation, the liver mass and triglyceride content remained unchanged in individuals subjected to prenatal restriction, in contrast to the reduction experienced by the control group. The latter is associated with the expression of the key genes involved in energy homeostasis (Pepck, Pparα/Pparγ), indicating a differential use of nutritional resources. In addition, thrifty animals, subjected to chronic caloric restriction, showed a severe reduction in locomotor and gluconeogenic activity, which is consistent with the regulatory role of Sirt1 and its downstream targets Mao and Pepck. Our results reveal that prenatal caloric restriction translates into a sparing metabolism in response to acute and chronic lack of food in adulthood.


Asunto(s)
Restricción Calórica , Obesidad , Ratones , Embarazo , Masculino , Femenino , Animales , Peso Corporal/fisiología , Dieta , Homeostasis
4.
Biol Res ; 56(1): 41, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37438828

RESUMEN

BACKGROUND: Hyperbaric oxygen treatment (HBOT) has been reported to modulate the proliferation of neural and mesenchymal stem cell populations, but the molecular mechanisms underlying these effects are not completely understood. In this study, we aimed to assess HBOT somatic stem cell modulation by evaluating the role of the mTOR complex 1 (mTORC1), a key regulator of cell metabolism whose activity is modified depending on oxygen levels, as a potential mediator of HBOT in murine intestinal stem cells (ISCs). RESULTS: We discovered that acute HBOT synchronously increases the proliferation of ISCs without affecting the animal's oxidative metabolism through activation of the mTORC1/S6K1 axis. mTORC1 inhibition by rapamycin administration for 20 days also increases ISCs proliferation, generating a paradoxical response in mice intestines, and has been proposed to mimic a partial starvation state. Interestingly, the combination of HBOT and rapamycin does not have a synergic effect, possibly due to their differential impact on the mTORC1/S6K1 axis. CONCLUSIONS: HBOT can induce an increase in ISCs proliferation along with other cell populations within the crypt through mTORC1/S6K1 modulation without altering the oxidative metabolism of the animal's small intestine. These results shed light on the molecular mechanisms underlying HBOT therapeutic action, laying the groundwork for future studies.


Asunto(s)
Oxigenoterapia Hiperbárica , Transducción de Señal , Células Madre , Animales , Ratones , Proliferación Celular , Intestinos/citología , Diana Mecanicista del Complejo 1 de la Rapamicina , Oxígeno , Sirolimus/farmacología , Células Madre/efectos de los fármacos
5.
Front Physiol ; 12: 769444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925065

RESUMEN

Variations in the availability of nutritional resources in animals can trigger reversible adjustments, which in the short term are manifested as behavioral and physiological changes. Several of these responses are mediated by Sirt1, which acts as an energy status sensor governing a global genetic program to cope with changes in nutritional status. Growing evidence suggests a key role of the response of the perinatal environment to caloric restriction in the setup of physiological responses in adulthood. The existence of adaptive predictive responses has been proposed, which suggests that early nutrition could establish metabolic capacities suitable for future food-scarce environments. We evaluated how perinatal food deprivation and maternal gestational weight gain impact the transcriptional, physiological, and behavioral responses in mice, when acclimated to caloric restriction in adulthood. Our results show a strong predictive capacity of maternal weight and gestational weight gain, in the expression of Sirt1 and its downstream targets in the brain and liver, mitochondrial enzymatic activity in skeletal muscle, and exploratory behavior in offspring. We also observed differential responses of both lactation and gestational food restriction on gene expression, thermogenesis, organ masses, and behavior, in response to adult caloric restriction. We conclude that the early nutritional state could determine the magnitude of responses to food scarcity later in adulthood, mediated by the pivotal metabolic sensor Sirt1. Our results suggest that maternal gestational weight gain could be an important life history trait and could be used to predict features that improve the invasive capacity or adjustment to seasonal food scarcity of the offspring.

6.
Cell Adh Migr ; 15(1): 58-73, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33724150

RESUMEN

Neuroblastoma is a highly metastatic tumor that emerges from neural crest cell progenitors. Focal Adhesion Kinase (FAK) is a regulator of cell migration that binds to the receptor Neogenin-1 and is upregulated in neuroblastoma. Here, we show that Netrin-1 ligand binding to Neogenin-1 leads to FAK autophosphorylation and integrin ß1 activation in a FAK dependent manner, thus promoting neuroblastoma cell migration. Moreover, Neogenin-1, which was detected in all tumor stages and was required for neuroblastoma cell migration, was found in a complex with integrin ß1, FAK, and Netrin-1. Importantly, Neogenin-1 promoted neuroblastoma metastases in an immunodeficient mouse model. Taken together, these data show that Neogenin-1 is a metastasis-promoting protein that associates with FAK, activates integrin ß1 and promotes neuroblastoma cell migration.


Asunto(s)
Integrina beta1 , Neuroblastoma , Animales , Adhesión Celular , Movimiento Celular , Quinasa 1 de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal , Proteínas de la Membrana , Ratones , Netrina-1
7.
J Exp Zool A Ecol Integr Physiol ; 333(5): 333-340, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32306529

RESUMEN

Aquatic animals often display physiological adjustments to improve their biological performance and hydrosaline balance in saline environments. In addition to energetic costs associated with osmoregulation, oxidative stress, and the activation of the antioxidant system are common cellular responses to salt stress in many species, but the knowledge of osmoregulation-linked oxidative homeostasis in amphibians is scarce. Here we studied the biochemical responses and oxidative responses of Xenopus laevis females exposed for 40 days to two contrasting salinities: hypo-osmotic (150 mOsm·kg-1 ·H2 O NaCl, HYPO group) and hyper-osmotic environments (340 mOsm·kg-1 ·H2 O NaCl, HYPER group). We found an increase of plasma osmolality and plasma urea concentration in the animals incubated in the HYPER treatment. Increases in electrolyte concentration were paralleled with an increase of both citrate synthase and cytochrome c oxidase activities in liver and heart. Interestingly, HYPO group had higher catabolic activity of the skin and liver total antioxidant capacity (TAC), compared with animals from the HYPER group. Moreover, there was an inverse relationship between liver TAC and plasma osmolality; and with the metabolic enzymes from liver. These findings suggest that salinity induces changes in urea metabolism and specific activity of metabolic enzymes, which appears to be tissue-dependent in X. laevis. Contrary to our expectations, we also found a moderate change in the oxidative status as revealed by the increase in TAC activity in the animals acclimated to low salinity medium, but constancy in the lipid peroxidation of membranes.


Asunto(s)
Especies Introducidas , Osmorregulación/fisiología , Estrés Oxidativo/fisiología , Salinidad , Xenopus laevis , Aclimatación , Animales , Peso Corporal , Femenino
8.
Sci Rep ; 10(1): 4156, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139739

RESUMEN

In order to maintain the energy balance, animals often exhibit several physiological adjustments when subjected to a decrease in resource availability. Specifically, some rodents show increases in behavioral activity in response to food restriction; a response regarded as a paradox because it would imply an investment in locomotor activity, despite the lack of trophic resources. Here, we aim to explore the possible existence of trade-offs between metabolic variables and behavioral responses when rodents are faced to stochastic deprivation of food and caloric restriction. Adult BALB/c mice were acclimatized for four weeks to four food treatments: two caloric regimens (ad libitum and 60% restriction) and two periodicities (continuous and stochastic). In these mice, we analyzed: exploratory behavior and home-cage behavior, basal metabolic rate, citrate synthase and cytochrome oxidase c enzyme activity (in liver and skeletal muscle), body temperature and non-shivering thermogenesis. Our results support the model of allocation, which indicates commitments between metabolic rates and exploratory behavior, in a caloric restricted environment. Specifically, we identify the role of thermogenesis as a pivotal budget item, modulating the reallocation of energy between behavior and basal metabolic rate. We conclude that brown adipose tissue and liver play a key role in the development of paradoxical responses when facing decreased dietary availability.


Asunto(s)
Conducta Exploratoria/fisiología , Animales , Temperatura Corporal , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C
9.
Sci Rep ; 9(1): 17616, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772390

RESUMEN

The high metabolic activity associated with endurance flights and intense fuelling of migrant birds may produce large quantities of reactive oxygen species, which cause oxidative damage. Yet it remains unknown how long-lived birds prepare for oxidative challenges prior to extreme flights. We combined blood measurements of oxidative status and enzyme and fat metabolism in Hudsonian godwits (Limosa haemastica, a long-lived shorebird) before they embarked on non-stop flights longer than 10,000 km during their northbound migrations. We found that godwits increased total antioxidant capacity (TAC) and reduced oxidative damage (TBARS) as the pre-migratory season progressed, despite higher basal metabolic rates before departure. Elevations in plasma ß-hydroxybutyrate and uric acid suggest that lipid and protein breakdown supports energetic requirements prior to migration. Significant associations between blood mitochondrial cytochrome-c oxidase and plasma TAC (negative) and TBARS (positive) during winter indicate that greater enzyme activity can result in greater oxidative damage and antioxidant responses. However enzyme activity remained unchanged between winter and premigratory stages, so birds may be unable to adjust metabolic enzyme activity in anticipation of future demands. These results indicate that godwits enhance their oxidative status during migratory preparation, which might represent an adaptation to diminish the physiological costs of long-distance migration.


Asunto(s)
Migración Animal/fisiología , Charadriiformes/metabolismo , Vuelo Animal/fisiología , Estrés Oxidativo , Ácido 3-Hidroxibutírico/sangre , Adiposidad , Animales , Antioxidantes/análisis , Metabolismo Basal , Citrato (si)-Sintasa/sangre , Complejo IV de Transporte de Electrones/sangre , Metabolismo Energético , Eritrocitos/química , Femenino , Peroxidación de Lípido , Longevidad , Masculino , Estaciones del Año , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Triglicéridos/sangre , Ácido Úrico/sangre
10.
Artículo en Inglés | MEDLINE | ID: mdl-31022522

RESUMEN

Physiological traits associated with maintenance, growth, and reproduction demand a large amount of energy and thus directly influence an animal's energy budget, which is also regulated by environmental conditions. In this study, we evaluated the interplay between ambient temperature and salinity of drinking water on energy budgets and physiological responses in adult Rufous-collared sparrow (Zonotrichia capensis), an omnivorous passerine that is ubiquitous in Chile and inhabits a wide range of environments. We acclimated birds to 30 days at two ambient temperatures (27 °C and 17 °C) and drinking water salinity (200 mM NaCl and fresh water) conditions. We evaluated: 1) the aerobic scope and the activities of mitochondrial metabolic enzymes, 2) osmoregulatory parameters, 3) the skin-swelling immune response to an antigen, 4) oxidative status, and 5) the length of telomeres of red blood cells. Our results confirm that Z. capensis tolerates the chronic consumption of moderate levels of salt, maintaining body mass but increasing their basal metabolic rates consistent with expected osmoregulatory costs. Additionally, the factorial aerobic scope was higher in birds acclimated to fresh (tap) water at both 17° and 27 °C. Drinking water salinity and low ambient temperatures negatively impacted inflammatory response, and we observed an increase in lipid peroxidation and high levels of circulating antioxidants at low temperatures. Finally, telomere length was not affected by osmo- and thermoregulatory stress. Our results did not support the existence of an interplay between environmental temperature and drinking water salinity on most physiological and biochemical traits in Z. capensis, but the negative effect of these two factors on the inflammatory immune response suggests the existence of an energetic trade-off between biological functions that act in parallel to control immune function.


Asunto(s)
Inmunidad Innata/fisiología , Estrés Oxidativo/fisiología , Sales (Química)/metabolismo , Gorriones/fisiología , Aclimatación/fisiología , Animales , Metabolismo Basal , Conducta Alimentaria/fisiología , Reproducción/fisiología , Salinidad , Cloruro de Sodio Dietético/metabolismo , Temperatura
11.
Front Physiol ; 9: 995, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30104981

RESUMEN

Hyperbaric oxygen therapy (HBOT) is effective for the medical treatment of diverse diseases, infections, and tissue injury. In fact, in recent years there is growing evidence on the beneficial effect of HBOT on non-healing ischemic wounds. However, there is still yet discussion on how this treatment could benefit from combination with regenerative medicine strategies. Here we analyzed the effects of HBOT on three specific aspects of tissue growth, maintenance, and regeneration: (i) modulation of adult rodent (Mus musculus) intestinal stem cell turnover rates; (ii) angiogenesis dynamics during the development of the chorio-allantoic membrane (CAM) in Gallus gallus embryos; (iii) and wound-healing in a spontaneous type II diabetic mouse model with a low capacity to regenerate skin. To analyze these aspects of tissue growth, maintenance, and regeneration, we used HBOT alone or in combination with cellular therapy. Specifically, Wharton Jelly Mesenchymal Stem cells (WJ-MSC) were embedded in a commercial collagen-scaffold. HBOT did not affect the metabolic rate of adult mice nor of chicken embryos. Notwithstanding, HBOT modified the proliferation rate of stem cells in the mice small intestinal crypts, increased angiogenesis in the CAM, and improved wound-healing and tissue repair in diabetic mice. Moreover, our study demonstrates that combining stem cell therapy and HBOT has a collaborative effect on wound-healing. In summary, our data underscore the importance of oxygen tension as a regulator of stem cell biology and support the potential use of oxygenation in clinical treatments.

12.
Front Physiol ; 9: 1821, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30670976

RESUMEN

Several studies have evaluated plastic changes in the morphology of the digestive tract in rodents subjected to caloric restriction or restricted availability. Nevertheless, studies that link these morphological responses to physiological consequences are scarce. In order to investigate short-term plastic responses in the intestine, we acclimated adult Mus musculus (BALB/c) males for 20 days to four distinctive treatments: two caloric regimens (ad libitum and 60% of calorie ingestion) and two levels of periodicity of the regimens (continuous and stochastic treatment). At the end of the treatment we analyzed the cell proliferation and cell death dynamics of small intestinal crypts in these animals. In addition, we measured organ masses and lengths, hydrolytic digestive enzyme activities, and energy output from feces. Finally, in order to explore the metabolic changes generated by these dietary conditions we assessed the catabolic activity (i.e., enzymes) of the liver. Our results show that individuals acclimated to a continuous and 60% regimen presented longer intestines in comparison to the other treatments. Indeed, their intestines grew with a rate of 0.22 cm/day, generating a significant caloric reduction in the content of their feces. Besides, both mass and intestinal lengths were predicted strongly by the stabilization coefficient of BrdU+ proliferating cells per crypt, the latter correlating positively with the activity of n-aminopeptidases. Interestingly, by using pharmacological inhibition of the kinase mammalian target of rapamycin complex 1 (mTORC1) by Rapamycin, we were able to recapitulate similar changes in the proliferation dynamics of intestinal stem cells. Based on our results, we propose that the impact of caloric restriction on macroscopic variation in morphology and functional changes in digestive n-aminopeptidases occurs through synchronization in the proliferation rate of stem and/or progenitor cells located in the small intestinal crypts and requires mTORC1 as a key mediator. Hence, we suggest that an excessive stem and progenitor activity could result in increased crypts branching and might therefore underlie the reported intestinal tissue expansion in response to short-term caloric restriction. Summarizing, we demonstrate for the first time that short-term caloric restriction induces changes in the level of cell proliferation dynamics explaining in part digestive tract plasticity in adaptive performance.

13.
Front Physiol ; 8: 654, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28919865

RESUMEN

Many physiological adjustments occur in response to salt intake in several marine taxa, which manifest at different scales from changes in the concentration of individual molecules to physical traits of whole organisms. Little is known about the influence of salinity on the distribution, physiological performance, and ecology of passerines; specifically, the impact of drinking water salinity on the oxidative status of birds has been largely ignored. In this study, we evaluated whether experimental variations in the salt intake of a widely-distributed passerine (Zontotrichia capensis) could generate differences in basal (BMR) and maximum metabolic rates (Msum), as well as affect metabolic enzyme activity and oxidative status. We measured rates of energy expenditure of birds after 30-d acclimation to drink salt (SW) or tap (fresh) water (TW) and assessed changes in the activity of mitochondrial enzymes (cytochrome c oxidase and citrate synthase) in skeletal muscle, heart, and kidney. Finally, we evaluated the oxidative status of bird tissues by means of total antioxidant capacity (TAC) and superoxide dismutase activities and lipid oxidative damage (Malondialdehyde, MDA). The results revealed a significant increase in BMR but not Msum, which resulted in a reduction in factorial aerobic scope in SW- vs. TW-acclimated birds. These changes were paralleled with increased kidney and intestine masses and catabolic activities in tissues, especially in pectoralis muscle. We also found that TAC and MDA concentrations were ~120 and ~400% higher, respectively in the liver of animals acclimated to the SW- vs. TW-treatment. Our study is the first to document changes in the oxidative status in birds that persistently drink saltwater, and shows that they undergo several physiological adjustments that range that range in scale from biochemical capacities (e.g., TAC and MDA) to whole organism traits (e.g., metabolic rates). We propose that the physiological changes observed in Z. capensis acclimated to saltwater could be common phenomena in birds and likely explain selection of prey containing little salt and habitats associated with low salinity.

14.
Biol Open ; 5(7): 955-61, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27334694

RESUMEN

Studies of aquatic invertebrates reveal that salinity affects feeding and growth rates, reproduction, survival, and diversity. Little is known, however, about how salinity impacts the energy budget of vertebrates and amphibians in particular. The few studies focused on this topic in vertebrates suggest that the ingestion of salts and the resulting osmoregulatory activity is energetically expensive. We analyzed the effect of saline acclimation on standard metabolic rates (SMR) and the activities of metabolic enzymes of internal organs and osmoregulatory variables (plasma osmolality and urea plasma level) in females of Xenopus laevis by means of acclimating individuals to an isosmotic (235 mOsm NaCl; ISO group) and hyper-osmotic (340 mOsm NaCl; HYP group) environment for 40 days. After acclimation, we found that total and mass-specific SMR was approximately 80% higher in the HYP group than those found in the ISO group. These changes were accompanied by higher citrate synthase activities in liver and heart in the HYP group than in the ISO group. Furthermore, we found a significant and positive correlation between metabolic rates and plasma urea, and citrate synthase activity in liver and heart. These results support the notion that the cost of osmoregulation is probably common in most animal species and suggest the existence of a functional association between metabolic rates and the adjustments in osmoregulatory physiology, such as blood distribution and urea synthesis.

15.
Front Physiol ; 7: 690, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28119633

RESUMEN

Studies on the yolk and albumen content in bird eggs, and the effects of variations in their relative loads in the phenotype of the birds, have revealed multiple consequences at different levels of biological organization, from biochemical traits to behavior. However, little is known about the effect of albumen variation on energetics performance during development and early ontogeny, despite the fact that variation in energy expenditure may have consequences in terms of fitness for both feral and domestic species. In this work, we evaluated experimentally whether variations in the content of albumen of Gallus gallus eggs could generate differences in metabolic rates during embryonic development. Additionally, we assessed changes in the activity of mitochondrial enzymes (cytochrome c oxidase and citrate synthase) in skeletal muscles and liver. Finally, we evaluated the success of hatching of these embryos and their metabolic rates (MR) post-hatching. The results revealed a significant reduction in MR in the last fifth of embryonic life, and reduced catabolic activities in the skeletal muscle of chicks hatched from albumen-removed eggs. However, the same group demonstrated an increase in catabolic activity in the liver, suggesting the existence of changes in energy allocation between tissues. Besides, we found a decrease in hatching success in the albumen-removed group, suggesting a negative effect of the lower albumen content on eggs, possibly due to lower catabolic activities in skeletal muscle. We also found a compensatory phenomenon in the first week after hatching, i.e., birds from albumen-removed eggs did not show a decrease in MR either at thermoneutral temperatures or at 10°C, compared to the control group. Collectively, our data suggest that a reduction in albumen may generate a trade-off between tissue metabolic activities, and may explain the differences in metabolic rates and hatching success, supporting the immediate adaptive response (IAR) hypothesis.

16.
Artículo en Inglés | MEDLINE | ID: mdl-23103672

RESUMEN

Recent experiments on shorebirds have demonstrated that maintaining an active osmoregulatory machinery is energetically expensive. This may, in part, explain diet and habitat selection in birds with salt glands. However little is known about the osmoregulatory costs in birds lacking functional salt glands. In these birds, osmotic work is done almost exclusively by the kidneys. We investigated the osmoregulatory cost in a bird species lacking functional salt glands, the passerine Zonotrichia capensis. After 20 days of acclimation to fresh water (FW) and salt water (200 mM NaCl, SW), SW birds tended to be heavier than FW birds. However, this difference was not statistically significant. Total basal metabolic rate was higher in SW birds as compared with FW birds. Renal and heart masses were also higher in the SW group. We also found greater medullary development and an increase in urine osmolality in the SW group. In spite of Z. capensis' ability to tolerate a moderate salt load in the laboratory, we hypothesize that increased cost of maintenance produced by salt consumption may significantly affect energy budget, dietary, and habitat choices in the field.


Asunto(s)
Glándula de Sal/fisiología , Gorriones/fisiología , Equilibrio Hidroelectrolítico/fisiología , Animales , Metabolismo Energético , Agua Dulce , Glándula de Sal/metabolismo , Agua de Mar , Cloruro de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...